Abstract
Most control methods deployed in lower extremity rehabilitation robots cannot automatically adjust to different gait cycle stages and different rehabilitation training modes for different impairment subjects. This article presents a continuous seamless assist-as-needed control method based on sliding mode adaptive control. A forgetting factor is introduced, and a small trajectory deviation from reference normal gait trajectory is used to learn the rehabilitation level of a human subject in real time. The assistance torque needed to complete the reference normal gait trajectory is learned through radial basis function neural networks, so that the rehabilitation robot can adaptively provide the assistance torque according to subject’s needs. The performance and efficiency of this adaptive seamless assist-as-needed control scheme are tested and validated by 12 volunteers on a rehabilitation robot prototype. The results show that the proposed control scheme could adaptively reduce the robotic assistance according to subject’s rehabilitation level, and the robotic assistance torque depends on the forgetting factor and the active participation level of subjects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.