Abstract
The importance of body sensor networks to monitor patients over a prolonged period of time has increased with an advance in home healthcare applications. Sensor nodes need to operate with very low-power consumption and under the constraint of limited memory capacity. Therefore, it is wasteful to digitize the sensor signal at a constant sample rate, given that the frequency contents of the signals vary with time. Adaptive sampling is established as a practical method to reduce the sample data volume. In this paper a low-power analog system is proposed, which adjusts the converter clock rate to perform a peak-picking algorithm on the second derivative of the input signal. The presented implementation does not require an analog-to-digital converter or a digital processor in the sample selection process. The criteria for selecting a suitable detection threshold are discussed, so that the maximum sampling error can be limited. A circuit level implementation is presented. Measured results exhibit a significant reduction in the average sample frequency and data rate of over 50% and 38% respectively.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.