Abstract

The sample distribution has a vital influence on the quality of a Kriging surrogate model, which may further influence the required cost or convergence of the surrogate model-based design and optimization problems. Adaptive sampling methods utilize the information from existing samples to reasonably allocate the sequential samples, which can generally build a more accurate Kriging surrogate model under the same computational budget. However, most of the existing adaptive sampling methods for the Kriging surrogate model are only available for single-output problems, and there are few studies on problems with multiple responses. In this paper, an adaptive sampling method based on Delaunay triangulation and technique for order preference by similarity to ideal solution (TOPSIS) is proposed for Kriging surrogate model with multiple outputs (mKMDT). In the proposed mKMDT, Delaunay triangulation is used to partition the design space into multiple triangle regions, whose area denotes the dispersion of the sample points. The prediction error at each triangle’s centroid represents the local approximation error. Specifically, three different strategies are developed when allocating weights to the area and the prediction error of each triangle with the entropy method and the TOPSIS method. The performance of the proposed method is illustrated through numerical examples with different numbers of outputs and a collision problem between the missile and the adapter. Results show that the proposed method can construct an accuracy surrogate model with few samples, which is useful for practical engineering design problems with multiple outputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.