Abstract

Safety-risk management in the hydrocarbon processing industry necessitates the availability of appropriate data and decision-making tools. Operational factors may influence chemical and physical risk occurrences associated with high-hazard plant operation in the chemical process sectors. Thus, safety-risk technologies and assessments should be explored considering potential events that result in fatalities, property destruction, economic loss, and environmental degradation. This research established a systematic framework for reducing safety risks to decrease accidents and hazards associated with the inherent production processes, as well as proposing process-level maintenance techniques for the specified hydrocarbon processing industry. First, the hazards of chemical reactivity were studied to determine which equipment performance poses the greatest risk. Physical and chemical risks were obtained to configure out identical nodes of expressing severe hazard via a qualitative assessment using the HAZOP study. The fuzzy best-to-worst technique combined with an analytical network process (fuzzy-BWANP) was utilized to assess the safety-risk criticality due to the operational reaction process, environmental risk, economical safety, and occupational management. Furthermore, the annual loss of expectancy and exposure factors for the earlier categories based on their operational expenses and failure time were estimated. The case study examined how to increase the process feasibility of an acrylonitrile plant. Consideration of economic loss resulted in the extraction of a risk index that helps decision-makers in determining priority tasks for addressing urgent hazards in any hydrocarbon processing industry's safety management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.