Abstract
An adaptive rate Compressive Sensing (CS) method for video signals is proposed. The Blocked Compressive Sensing (BCS) scheme is adopted in this method. Firstly, each video frame is blocked and measured by the BCS scheme, and then the mean and variance of each image block are estimated by observing the CS measurement results. Using the mean and variance of each image block, the sparsity of the block is estimated and then the block can be classified. Adaptive rate sampling is realized by assigning different sampling rates to different classes. At the same time, in order to make better use of the correlation between video frames, a reference block subtraction method is also designed in this paper, which uses the estimates of the sparsity of image blocks as the basis for the reference block update. All operations of the proposed method only depend on the CS measurement results of image blocks and all calculations are simple. Thus, the proposed method is suitable for implementation in CS sampling devices with limited computational performance. Experiment results show that, compared with the actual values, the sparsity estimates and block classification results of the proposed method are accurate. Compared with the latest adaptive Compressive Video Sensing methods, the reconstructed image quality of the proposed method is better.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.