Abstract

Dual-polarization radar provides information about precipitation microphysics through drop size distribution and hydrometeor classification, and, therefore, can produce improvement in quantitative precipitation estimation. Rainfall relations combination is an optimization algorithm; however, optimally selecting the rainfall relation is challenging in dual-polarization rainfall estimation. In this study, an adaptive rainfall algorithm is developed using a logistic regression model to guide the choice of the optimal radar rainfall relation. The logistic model is established according to the matched dual-polarization radar data and rain gauge data. Only liquid particles are considered for the rainfall estimation determined by the hydrometeor classification of dual-polarization radar, and the polarimetric rainfall relations are obtained with a neural network algorithm based on the disdrometer data. The proposed algorithm is validated with C-band dual-polarization radar data, and the results show that the adaptive algorithm outperforms the single rainfall relation and conventional combination algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call