Abstract
Query processing in data integration occurs over network-bound, autonomous data sources. This requires extensions to traditional optimization and execution techniques for three reasons: there is an absence of quality statistics about the data, data transfer rates are unpredictable and bursty, and slow or unavailable data sources can often be replaced by overlapping or mirrored sources. This paper presents the Tukwila data integration system, designed to support adaptivity at its core using a two-pronged approach. Interleaved planning and execution with partial optimization allows Tukwila to quickly recover from decisions based on inaccurate estimates. During execution, Tukwila uses adaptive query operators such as the double pipelined hash join, which produces answers quickly, and the dynamic collector, which robustly and efficiently computes unions across overlapping data sources. We demonstrate that the Tukwila architecture extends previous innovations in adaptive execution (such as query scrambling, mid-execution re-optimization, and choose nodes), and we present experimental evidence that our techniques result in behavior desirable for a data integration system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.