Abstract

Efficient computation of quality of service (QoS) during medical data processing through intelligent measurement methods is one of the mandatory requirements of the medial healthcare world. However, emergency medical services often involve transmission of critical data, thus having stringent requirements for network quality of service (QoS). This paper contributes in three distinct ways. First, it proposes the novel adaptive QoS computation algorithm (AQCA) for fair and efficient monitoring of the performance indicators, i.e., transmission power, duty cycle and route selection during medical data processing in healthcare applications. Second, framework of QoS computation in medical applications is proposed at physical, medium access control (MAC) and network layers. Third, QoS computation mechanism with proposed AQCA and quality of experience (QoE) is developed. Besides, proper examination of QoS computation for medical healthcare application is evaluated with 4–10 inches large-screen user terminal (UT) devices (for example, LCD panel size, resolution, etc.). These devices are based on high visualization, battery lifetime and power optimization for ECG service in emergency condition. These UT devices are used to achieve highest level of satisfaction in terms, i.e., less power drain, extended battery lifetime and optimal route selection. QoS parameters with estimation of QoE perception identify the degree of influence of each QoS parameters on the medical data processing is analyzed. The experimental results indicate that QoS is computed at physical, MAC and network layers with transmission power (− 15 dBm), delay (100 ms), jitter (40 ms), throughput (200 Bytes), duty cycle (10%) and route selection (optimal). Thus it can be said that proposed AQCA is the potential candidate for QoS computation than Baseline for medical healthcare applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call