Abstract

In this paper, a self-organizing radial basis function (SORBF) neural network is designed to improve both accuracy and parsimony with the aid of adaptive particle swarm optimization (APSO). In the proposed APSO algorithm, to avoid being trapped into local optimal values, a nonlinear regressive function is developed to adjust the inertia weight. Furthermore, the APSO algorithm can optimize both the network size and the parameters of an RBF neural network simultaneously. As a result, the proposed APSO-SORBF neural network can effectively generate a network model with a compact structure and high accuracy. Moreover, the analysis of convergence is given to guarantee the successful application of the APSO-SORBF neural network. Finally, multiple numerical examples are presented to illustrate the effectiveness of the proposed APSO-SORBF neural network. The results demonstrate that the proposed method is more competitive in solving nonlinear problems than some other existing SORBF neural networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.