Abstract

In radiotherapy, treatment needs to be delivered in time. Long waiting times can result in patient anxiety and growth of tumors. They are often caused by inefficient use of radiotherapy equipment, the linear accelerators (LINACs). However, making an efficient schedule is very challenging, especially when we have multiple types of patients, having different service requirements and waiting time constraints. Moreover, in radiotherapy a patient needs to go through a LINAC multiple times over multiple days, to complete the treatment. In this paper we model the radiotherapy treatment process as a queueing system with multiple queues, and we propose a new class of scheduling policies that are simple, flexible and fair to patients. Numerical experiments show that our new policy outperforms the commonly used policies. We also extend the policy to an adaptive one to deal with unknown and fluctuating arrival rates. Our adaptive policy turns out to be quite efficient in absorbing the effects caused by these changes. Due to the complexity of our problem, we select the parameters of the policies through simulation-based optimization heuristics. Our work may also have important implications for managers in other service systems such as call centers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.