Abstract

A reliable and real-time predictor is very useful to a wide array of industries to forecast the behaviour of dynamic systems. In this paper, an adaptive predictor is developed based on the neuro-fuzzy approach to dynamic system forecasting. An adaptive training technique is proposed to improve forecasting performance, accommodate different operation conditions, and prevent possible trapping due to local minima. The viability of the developed predictor is evaluated by using both gear system condition monitoring and material fatigue testing. The investigation results show that the developed adaptive predictor is a reliable and robust forecasting tool. It can capture the system's dynamic behaviour quickly and track the system's characteristics accurately. Its performance is superior to other classical forecasting schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.