Abstract

An automated plant biometric system is now an important step in preserving nature’s biodiversity. This paper presents a novel Relative Sub-image Sparse Coefficient (RSSC) algorithm for mobile devices (MDs) representing plant leaves into a mathematically compact vector for its classification. The RSSC feature vector includes local Statistical Entropy Texture (SET) information inter-related to all the sub-images within a leaf. RSSC space is merged with Gray Level Co-occurrence Matrix (GLCM) feature to refine the outputs using best-Nearest Neighbor (best-NN), designed for MDs. The experiments were performed on three different types of leaf datasets: (i) Flavia, (ii) ICL and (iii) Diseased leaf datasets. The results proves our method more accurate and better compared to other existing plant identification systems. The proposed approach is also tolerant under shape distortion caused while capturing. The mobile machine learning system for leaf image informatics is deployed on Android devices which helps botanists, agriculturists and medical biologists to recognize ubiquitously the herbs and plant species anywhere-anytime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.