Abstract

As a weak signal processing method that utilizes noise enhanced fault signals, stochastic resonance (SR) is widely used in mechanical fault diagnosis. However, the classic bistable SR has a problem with output saturation, which affects its ability to enhance fault characteristics. Moreover, it is difficult to implement SR when the fault frequency is not clear, which limits its application in engineering practice. To solve these problems, this paper proposed an adaptive periodical stochastic resonance (APSR) method based on the grey wolf optimizer (GWO) algorithm for rolling bearing fault diagnosis. The periodical stochastic resonance (PSR) model can independently adjust the system parameters and effectively avoid output saturation. The GWO algorithm is introduced to optimize the PSR model parameters to achieve adaptive detection of the input signal, and the output signal-to-noise ratio (SNR) is used as the objective function of the GWO algorithm. Simulated signals verify the validity of the proposed method. Furthermore, this method is applied to bearing fault diagnosis; experimental analysis demonstrates that the proposed method not only obtains a larger output SNR but also requires less time for the optimization process. The diagnosis results show that the proposed method can effectively enhance the weak fault signal and has strong practical values in engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call