Abstract

Advances in micro robots in non-invasive medicine have enabled physicians to perform diagnostic and therapeutic procedures with higher resolution and lower risk than before. However, navigation and precise localisation of such micro robots inside human body still remains a challenge. This is mostly due to the 1) lack of precise communication channel models, 2) inhomogeneity of the propagation medium and 3) non-geometric boundaries of the tissues morphometric parameters. In this study, we derive novel intra-body path loss channel models for wave propagation in wireless capsule endoscopy, i.e., propagation through the gastrointestinal tract and the abdominal wall. We formulate an adaptive attenuation parameter as a function of permittivity, conductivity and the thickness of various layers between the transmitter and the receiver. The standard deviation of modelling error of the path loss using our adaptive channel model is smaller than 50% of that of existing channel models. We further analyse the sensitivity of the path loss model to the variations of thickness of different abdominal wall layers. We finally show that the thickness of the fat layer has the greatest influence on the total attenuation parameter of the path loss model and therefore, we modify our adaptive model accordingly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call