Abstract
Recent developments in robotics have heightened the need for visual SLAM. Dynamic objects are a major problem in visual SLAM which reduces the accuracy of localization due to the wrong epipolar geometry. This study set out to find a new method to address the low accuracy of visual SLAM in outdoor dynamic environments. We propose an adaptive feature point selection system for outdoor dynamic environments. Initially, we utilize YOLOv5s with the attention mechanism to obtain a priori dynamic objects in the scene. Then, feature points are selected using an adaptive feature point selector based on the number of a priori dynamic objects and the percentage of a priori dynamic objects occupied in the frame. Finally, dynamic regions are determined using a geometric method based on Lucas-Kanade optical flow and the RANSAC algorithm. We evaluate the accuracy of our system using the KITTI dataset, comparing it to various dynamic feature point selection strategies and DynaSLAM. Experiments show that our proposed system demonstrates a reduction in both absolute trajectory error and relative trajectory error, with a maximum reduction of 39% and 30%, respectively, compared to other systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.