Abstract

The navigation accuracy of ship work is largely dependent on the initial alignment accuracy of the inertial navigation system. However, azimuth angle alignment cannot be completed rapidly on the sea surface with strong winds and waves, which reduces the work efficiency of ships. Aiming at this problem, an adaptive optimization reverse navigation algorithm is proposed in this paper. Firstly, a reverse navigation method is established to process the original navigation data in reverse time sequence. After multiple forward and reverse navigation calculations in the same time period, the large misalignment angle error is reduced and the filtering convergence speed is improved. Secondly, the adaptive algorithm is introduced to intelligently control the calculation times of forward and backward navigation in different time periods, which can quickly achieve the alignment accuracy and further improve the response speed of the navigation system. Compared with the conventional alignment algorithm, the two horizontal-angle alignment errors and azimuth-angle alignment error of the ship are reduced by 81.15%, 76.44% and 76.58% respectively with the proposed algorithm in the results of the physical experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.