Abstract
A globally adaptive algorithm for numerical multiple integration over an n-dimensional simplex is described. The algorithm is based on a subdivision strategy that chooses for subdivision at each stage the subregion (of the input simplex) with the largest estimated error. This subregion is divided in half by bisecting an edge. The edge is chosen using information about the smoothness of the integrand. The algorithm uses a degree seven-five integration rule pair for approximate integration and error calculation, and a heap for a subregion data structure. Test results are presented and discussed where the algorithm is used to compute approximations to integrals used for estimation of eigenvalues of a random covariance matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.