Abstract
In this research an adaptive neuro-fuzzy inference system (ANFIS) has been applied to study the effect of working conditions on occupational injury using data of professional accidents assembled by ship repair yards. The data were statistically processed in order to select the most important parameters. These parameters were day and time, specialty, type of incident, dangerous situations and dangerous actions involved in the incident. The selected parameters proved, due to statistical processing, to be correlated to the observed frequency of four injury categories, namely negligible wounding, slight wounding, severe wounding and death. For each parameter a Gravity Factor (GF) was calculated based on the percentage of injury categories resulting to the incident each of the above mentioned parameter was involved. These GF values and the resulting risk value based on the accident data were used as input values to train the ANFIS model. Trapezoidal and Gauss membership functions were used for the training of the data. The model combined the modeling function of fuzzy inference with the learning ability of artificial neural networks. A set of rules has been generated directly from the statistically processed reported data. The model’s predictions were compared with a number of recorded data for verifying the approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.