Abstract

We present the design of an adaptive neural spike detector that dynamically adjusts the spike detection threshold based on the signal to noise ratio of the neural data sets. We propose a self-learning architecture, with a threshold-lock loop that feeds back a spike sorting performance index to the FSM inside the adaptive spike detector. The FSM references this performance index and dynamically determines an optimum threshold level for the incoming neural data sets. The architecture enables an autonomous operation without any manual adjustment from users. The simulation results demonstrate that the adaptive spike detector successfully locks to a threshold level, which is optimum from a spike-sorting standpoint.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.