Abstract

Photothermal depth profilometry is formulated as a nonlinear inverse scattering problem. Starting with the one-dimensional heat diffusion equation, we derive a mathematical model relating arbitrary variation in the depth-dependent thermal conductivity to observed thermal wavefields at the surface of a material sample. The form of the model is particularly convenient for incorporation into a nonlinear optimization framework for is particularly convenient for incorporation into a nonlinear optimization framework for recovering the conductivity based on thermal wave data obtained at multiple frequencies. We develop an adaptive, multiscale algorithm for solving this highly ill-posed inverse problem. The algorithm is designed to produce an accurate, low-order representation of the thermal conductivity by automatically controlling the level of detail in the reconstruction. This control is designed to reflect both (1) the nature of the underlying physics, which says that scale should decrease with depth, and (2) the particular structure of the conductivity profile, which may require a sparse collection of fine-scale components to adequately represent significant features such as a layering structure. The approach is demonstrated in a variety of synthetic examples representative of nondestructive evaluation problems seen in the steel industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.