Abstract

AbstractA program for finite element analysis of 3D linear elasticity problems is described. The program uses quadratic hexahedral elements. The solution process starts on an initial coarse mesh; here error estimators are determined by the standard Babuška‐Rheinboldt method and local refinement is performed by partitioning of indicated elements, each hexahedron into eight new elements. Then the discrete problem is solved on the second mesh and the refinement process proceeds in the following way‐on the ith mesh only the elements caused by refinement on the (i‐1)th mesh can be refined. The control of refinement is the task of the user because the dimension of the discrete problem grows very rapidly in 3D. The discrete problem is being solved by the frontal solution method on the initial mesh and by a newly developed and very efficient local multigrid method on the refined meshes. The program can be successfully used for solving problems with structural singularities, such as re‐entrant corners and moving boundary conditions. A numerical example shows that such problems are solved with the same efficiency as regular problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.