Abstract

The objective of this paper is the construction of a robust strategy towards adaptively solving Signorini's frictional contact problems. The frictional contact problem between a linearly elastic body and rigid foundation is formulated as a classical boundary value problem of the elastic body but associated with special inequality conditions on the contact surface. A new iterative approach is presented to solve the problem on a given mesh. In the first iteration the candidate nodes are assumed to be in micro-slip contact and then proceeding to update the contact status according to the actual displacements and stresses obtained at the end of each increment. An efficient multigrid method is developed to solve the discrete problems of different iterations. The proposed iterative procedure is integrated with an error indicator and automatic grid generator to construct an adaptive multigrid method. Numerical results of the convergence rates, automatically generated grid sequence, contact stresses and strains as well as two parametric studies are presented to prove the efficiency of the proposal. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.