Abstract

The ensemble Kalman inversion (EKI), as a derivative-free methodology, has been widely used in the parameter estimation of inverse problems. Unfortunately, its cost may become moderately large for systems described by high dimensional nonlinear PDEs, as EKI requires a relatively large ensemble size to guarantee its performance. In this paper, we propose an adaptive multi-fidelity polynomial chaos (PC) based EKI technique to address this challenge. Our new strategy combines a large number of low-order PC surrogate model evaluations and a small number of high-fidelity forward model evaluations, yielding a multi-fidelity approach. Especially, we present a new approach that adaptively constructs and refines a multi-fidelity PC surrogate during the EKI simulation. Since the forward model evaluations are only required for updating the low-order multi-fidelity PC model, whose number can be much smaller than the total ensemble size of the classic EKI, the entire computational costs are thus significantly reduced. The new algorithm was tested through the two-dimensional time fractional inverse diffusion problems and demonstrated great effectiveness in comparison with PC based EKI and classic EKI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.