Abstract

Despite its ability to handle occlusions and noise, sparse tracking may be inadequate to describe complex noise corruption, for instance, in urban road tracking, where road surfaces are often significantly disrupted by the existence of occlusions and noise in high-resolution (HR) satellite imagery. To address this issue, this letter presents a semiautomatic approach for road extraction from HR satellite images. Firstly, a multifeature sparse model is introduced to represent the road target appearance. Next, a novel sparse constraint regularized mean-shift algorithm is used to support the road tracking. Furthermore, multiple features are combined by weighting their contributions using a novel reliability measure derived to distinguish target from background. The experiments confirm that the proposed method performs better than the current state-of-the-art methods for the extraction of roads from HR imagery, in terms of reliability, robustness, and accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.