Abstract

In recent years, the botnets have been the most common threats to network security since it exploits multiple malicious codes like a worm, Trojans, Rootkit, etc. The botnets have been used to carry phishing links, to perform attacks and provide malicious services on the internet. It is challenging to identify Peer-to-peer (P2P) botnets as compared to Internet Relay Chat (IRC), Hypertext Transfer Protocol (HTTP) and other types of botnets because P2P traffic has typical features of the centralization and distribution. To resolve the issues of P2P botnet identification, we propose an effective multi-layer traffic classification method by applying machine learning classifiers on features of network traffic. Our work presents a framework based on decision trees which effectively detects P2P botnets. A decision tree algorithm is applied for feature selection to extract the most relevant features and ignore the irrelevant features. At the first layer, we filter non-P2P packets to reduce the amount of network traffic through well-known ports, Domain Name System (DNS). query, and flow counting. The second layer further characterized the captured network traffic into non-P2P and P2P. At the third layer of our model, we reduced the features which may marginally affect the classification. At the final layer, we successfully detected P2P botnets using decision tree Classifier by extracting network communication features. Furthermore, our experimental evaluations show the significance of the proposed method in P2P botnets detection and demonstrate an average accuracy of 98.7%.

Highlights

  • Nowadays, the network environments are becoming more and more complex and so the security problems

  • This study demonstrates some efficient results by analysing the network traffic about the most relevant attacks: Internet Relay Chat (IRC), SPAM, Click Fraud, DDoS, FastFlux, Port Scan, Compiled and Controlled record by CTU, Hypertext Transfer Protocol (HTTP), Waledac, Storm and Zeus botnets

  • Our results prove the significance of the proposed framework as compared to the results obtained from different classifiers

Read more

Summary

Introduction

The network environments are becoming more and more complex and so the security problems. A Botnet is a system of customized bots (computers) controlled remotely by a botmaster. A botnet can perform different noxious exercises, for example, sending spam messages, phishing, click misrepresentation, Distributed Denial of Service DDoS and spreading malicious programming. To viably oversee a botnet, the botmaster develops a framework of a correspondence channel to send directions to the Bots and to get results from them [1]. The fundamental contrast between a botnet and other malicious code is the structure utilized in the command and control (C & C) [2]. Compared to other malware programs which are being used to perform malicious conduct exclusively, a botnet functions as a gathering of contaminated hosts dependent on the C & C correspondence channel

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.