Abstract

If there is an occlusion, the target state model would not match motion model anymore and measurement model also would get worse. To solve these problems, an improved particle filtering algorithm based on adaptive motion model and multiple-cue fusion is presented. Under the theory framework of particle filters, the weighted color histogram and LBP texture feature entropy are used to describe features. And the algorithm adjusts features distribution coefficient automatically by calculating the Bhattacharyya distance between the object reference distribution and object sample distribution, thus the color and texture features can intelligently be fused to develop the observation model. The simple second order auto regressive model is chosen as the state transition model, and the system noise variance is adaptively determined by the minimum noise variance of every feature in object tracking. For the occlusion problem, the system maximum noise variance can be selected, along with particle random motion intensified and disseminating coverage amplified. The posterior distribution of the object is approximated by a set of weighted samples, while object tracking is implemented by the Bayesian propagation of the sample set. The analyses and experiments show that the performance of the proposed method is more effective and robust to target maneuver and occlusion and has good performances under complex background.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.