Abstract
We propose a modified linear parallel interference cancelation (PIC) structure using the adaptive minimum mean output-energy (MMOE) algorithm for direct-sequence code-division multiple-access (DS-CDMA) systems. The complexity of the proposed receiver structure is shown to be linear in the number of users and hence, lower complexity than the centralized minimum mean-squared error (MMSE) multiuser detector. It is demonstrated that the proposed receiver structure can significantly reduce the long training period required by the standard adaptive MMOE receiver in near-far environments. Both numerical and theoretical results show that the proposed receiver performs close to the optimum MMSE receiver whereas the conventional adaptive MMOE detector suffers from high BER's due to the imperfect filter coefficients. Also our results show a three fold increase in the number of users when the MMOE-PIC is used relative to the conventional MMOE receiver. Furthermore, the transient behavior of the proposed MMOE-PIC receiver due to abrupt changes in the interference level is examined. It is shown that the proposed adaptive receiver offers much faster self recovery, with less signal-to-interference ratio (SIR) degradation, than the standard MMOE in sever near-far scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.