Abstract

This paper presents an adaptive minimum-maximum value-based weighted median (AMMWM) filter that effectively restores noisy pixel in medical images at high noise density. The proposed filter computes two highly correlated groups of noise-free pixels using minimum and maximum value of the current window. Further, weighted medians of these groups determine the estimated value of candidate noisy pixel. If the current window fails to provide any noise-free pixels, its size is increased by one. The maximum size of window considered is 7 × 7 to minimise blurring. The proposed AMMWM filter is evaluated on various medical images where it provides higher quality metrics while preserving image features even at higher noise density. The simulation results using X-ray images show on an average 0.3 dB and 3.56 dB higher value of PSNR for wide (10%-90%) and very high (91%-98%) noise density ranges respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.