Abstract

AbstractThe clustering of spatio‐temporal events has become one of the most important research branches of spatio‐temporal data mining. However, the discovery of clusters of spatio‐temporal events with different shapes and densities remains a challenging problem because of the subjectivity in the choice of two critical parameters: the spatio‐temporal window for estimating the density around each event, and the density threshold for evaluating the significance of clusters. To make the clustering of spatio‐temporal events objective, in this study these two parameters were adaptively generated from statistical information about the dataset. More precisely, the density threshold was statistically modeled as an adjusted significance level controlled by the cardinality and support domain of the dataset, and the appropriate sizes of spatio‐temporal windows for clustering were determined by the spatio‐temporal classification entropy and stability analysis. Experiments on both simulated and earthquake datasets were conducted, and the results show that the proposed method can identify clusters of different shapes and densities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.