Abstract

Radial basis functions (RBF) provide powerful meshfree methods for multivariate interpolation for scattered data. RBF methods have been praised for their simplicity and ease of implementation in multivariate scattered data approximation. But both the approximation quality and stability depend on the distribution of the center set. It leads immediately to the problem of finding good or even optimal point sets for the reconstruction process. Many methods are constructed for center choosing. In this paper, we give a short overview of these algorithms including thinning algorithm, greedy algorithm, arclength equipartition like algorithm and k-means clustering algorithm. A new adaptive data-dependent method is provided at the end with some numerical examples to show its effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.