Abstract

Semi-analytical methods are a common way of solving non-hertzian contact problems when designing mechanical components. These methods require of the discretization of the domain into a set of pressure elements and their accuracy and computational cost are related to the number of elements in which the domain is discretized. But, while the accuracy increases as the pressure element mesh is refined, the computational cost increases quadratically with the number of pressure elements. So in the great majority of the cases, a commitment between accuracy and computational cost must be achieved. In this work, a new approach has been developed to improve the performance of semi-analytical methods for solving contact problems. This approach uses an adaptive mesh refinement strategy, based on the quadtree decomposition of the domain. As a result, the computational cost decreases, while the accuracy of the method remains constant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call