Abstract

We describe a second-order accurate sequential algorithm for solving two-phase multicomponent flow in porous media. The algorithm incorporates an unsplit second-order Godunov scheme that provides accurate resolution of sharp fronts. The method is implemented within a block structured adaptive mesh refinement (AMR) framework that allows grids to dynamically adapt to features of the flow and enables efficient parallelization of the algorithm. We demonstrate the second-order convergence rate of the algorithm and the accuracy of the AMR solutions compared to uniform fine-grid solutions. The algorithm is then used to simulate the leakage of gas from a Liquified Petroleum Gas (LPG) storage cavern, demonstrating its capability to capture complex behavior of the resulting flow. We further examine differences resulting from using different relative permeability functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call