Abstract
Coral reef species are frequently the focus of bio-prospecting, and when promising bioactive compounds are identified there is often a need for the development of responsible harvesting based on relatively limited data. The Caribbean gorgonian Pseudopterogorgia elisabethae has been harvested in the Bahamas for over a decade. Data on population age structure and growth rates in conjunction with harvest data provide an opportunity to compare fishery practices and outcomes to those suggested by a Beverton-Holt fishery model. The model suggests a minimum colony size limit of 7–9 years of age (21–28 cm height), which would allow each colony 2–4 years of reproduction prior to harvesting. The Beverton-Holt model assumes that colonies at or above the minimum size limit are completely removed. In the P. elisabethae fishery, colonies are partially clipped and can be repeatedly harvested. Linear growth of surviving colonies was up to 3 times that predicted for colonies that were not harvested and biomass increase was up to 9 times greater than that predicted for undisturbed colonies. The survival of harvested colonies and compensatory growth increases yield, and yields at sites that had previously been harvested were generally greater than predicted by the Beverton-Holt model. The model also assumes recruitment is independent of fishing intensity, but lower numbers of young colonies in the fished populations, compared to unfished populations, suggest possible negative effects of the harvest on reproduction. This suggests the need for longer intervals between harvests. Because it can be developed from data that can be collected at a single time, the Beverton-Holt model provides a rational starting point for regulating new fisheries where long-term characterizations of population dynamics are rarely available. However, an adaptive approach to the fishery requires the incorporation of reproductive data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.