Abstract

Turbulence modeling and the numerical discretization of the Navier–Stokes equations are strongly coupled in large-eddy simulations (LES). The truncation error of common approximations for the convective terms can outweigh the effect of a physically sound subgrid-scale (SGS) model, which generally operates on a range of scales that is marginally resolved by any discretization scheme. This mutual interference can have large and generally unpredictable effects on the accuracy of the solution. On the other hand, one can exploit this link by developing discretization methods from subgrid-scale models, or vice versa. Approaches where the SGS model and the numerical discretization scheme are fully merged are called implicit LES (ILES) methods.KeywordsReynolds StressTruncation ErrorDynamic Smagorinsky ModelPeriodic HillNumerical Discretization SchemeThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call