Abstract
AbstractA least‐squares mixed finite element method for linear elasticity, based on a stress‐displacement formulation, is investigated in terms of computational efficiency. For the stress approximation quadratic Raviart‐Thomas elements are used and these are coupled with the quadratic nonconforming finite element spaces of Fortin and Soulie for approximating the displacement. The local evaluation of the least‐squares functional serves as an a posteriori error estimator to be used in an adaptive refinement algorithm. We present computational results for a benchmark test problem of planar elasticity including nearly incompressible material parameters in order to verify the effectiveness of our adaptive strategy. For comparison, conforming quadratic finite elements are also used for the displacement approximation showing convergence orders similar to the nonconforming case, which are, however, not independent of the Lamé parameters. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.