Abstract
An adaptive least-squares finite element method is used to solve the compressible Euler equations in two dimensions. Since the method is naturally diffusive, no explicit artificial viscosity is added to the formulation. The inherent artificial viscosity, however, is usually large and hence does not allow sharp resolution of discontinuities unless extremely fine grids are used. To remedy this, while retaining the advantages of the least-squares method, a moving-node grid adaptation technique is used. The outstanding feature of the adaptive method is its sensitivity to directional features like shock waves, leading to the automatic construction of adapted grids where the element edge(s) are strongly aligned with such flow phenomena. Using well-known transonic and supersonic test cases, it has been demonstrated that by coupling the least-squares method with a robust adaptive method shocks can be captured with high resolution despite using relatively coarse grids. Copyright © 1999 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.