Abstract

This paper introduces the first adaptive least-squares finite element method (LS-FEM) for the Stokes equations with optimal convergence rates based on the newest vertex bisection with lowest-order Raviart-Thomas and conforming $$P_1$$P1 discrete spaces for the divergence least-squares formulation in 2D. Although the least-squares functional is a reliable and efficient error estimator, the novel refinement indicator stems from an alternative explicit residual-based a posteriori error control with exact solve. Particular interest is on the treatment of the data approximation error which requires a separate marking strategy. The paper proves linear convergence in terms of the levels and optimal convergence rates in terms of the number of unknowns relative to the notion of a non-linear approximation class. It extends and generalizes the approach of Carstensen and Park (SIAM J. Numer. Anal. 53:43---62 2015) from the Poisson model problem to the Stokes equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.