Abstract
The Share-a-Ride Problem (SARP) aims at maximizing the profit of serving a set of passengers and parcels using a set of homogeneous vehicles. We propose an adaptive large neighborhood search (ALNS) heuristic to address the SARP. Furthermore, we study the problem of determining the time slack in a SARP schedule. Our proposed solution approach is tested on three sets of realistic instances. The performance of our heuristic is benchmarked against a mixed integer programming (MIP) solver and the Dial-a-Ride Problem (DARP) test instances. Compared to the MIP solver, our heuristic is superior in both the solution times and the quality of the obtained solutions if the CPU time is limited. We also report new best results for two out of twenty benchmark DARP instances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.