Abstract
In this paper a nonlinear controller is presented for Doubly-Fed Induction Machine (DFIM) drives. The nonlinear controller is designed based on the adaptive input-output feedback linearization control technique, using the fifth order model of induction machine in fixed stator d, q axis reference frames with stator currents and rotor flux components as state variables. The nonlinear controller can perfectly track the torque and flux reference signals in spite of stator and rotor resistance variations. Two level SVM-PWM back-to-back voltage source inverters are employed in the rotor circuit, in order to make the drive system capable of operating in the motoring and generating modes below and above the synchronous speed. Computer simulation results obtained, confirm the effectiveness and validity of the proposed control approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.