Abstract

Industrial wireless sensor networks (IWSNs) are usually fixedly deployed in industrial environments, and various sensor nodes cooperate with each other to complete industrial production tasks. The efficient work of each sensor node of IWSNs will improve the efficiency of the entire network. Automated robots need to perform timely inspection and maintenance of IWSNs in an industrial environment. Excessive inspection distance will increase inspection costs and increase energy consumption. Therefore, shortening the inspection distance can reduce production energy consumption, which is very important for the efficient operation of the entire system. However, the optimal detection path planning of IWSNs is an N‐P problem, which can usually only be solved by heuristic mathematical methods. This paper proposes a new adaptive immune ant colony optimization (AIACO) for optimizing automated inspection path planning. Moreover, novel adaptive operator and immune operator are designed to prevent the algorithm from falling into the local optimum and increase the optimization ability. In order to verify the performance of the algorithm, the algorithm is compared with genetic algorithm (GA) and immune clone algorithm (ICA). The simulation results show that the inspection distance of IWSNs using AIACO is lower than that of GA and ICA. In addition, the convergence speed of AIACO is faster than that of GA and ICA. Therefore, the AIACO proposed in this paper can effectively reduce the inspection energy consumption of the entire IWSN system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.