Abstract

In this work, we present an adaptive high-order minimum action method for dynamical systems perturbed by small noise. We use the hp finite element method to approximate the minimal action path and nonlinear conjugate gradient method to solve the optimization problem given by the Freidlin–Wentzell least action principle. The gradient of the discrete action functional is obtained through the functional derivative and the moving mesh technique is employed to enhance the approximation accuracy. Numerical examples are given to demonstrate the efficiency and accuracy of the proposed numerical method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.