Abstract
Most chaotic systems do not have even dynamical behavior over the whole phase space. In some regions, the system stretches and branches more violently than others. In the regions where the dynamics are violent, finer representation must be given. In this paper, we make use of this property to model chaos. We present an adaptive system based on fuzzy logic. It can refine its representation of a region in the phase space if that region requires it. It does so by adaptively generating more fuzzy rules to model a region only if that region has very violent dynamics. Experiments were performed to test the adaptive fuzzy system for capturing the dynamics of a normal dynamical system (the Van der Pol oscillator) as well as two chaotic systems (the Lorenz and Rossler attractors). Results indicate that the fuzzy system can produce an accurate model of the three dynamical systems. The adaptive rule generation algorithm allowed the fuzzy system to have an optimal number of rules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.