Abstract

This study considers the problem of fuzzy modeling of the images in pixel domain. A zero-order Takagi–Sugeno type fuzzy model provides fuzzy smoothing to the image intensities for removing the additive noise from an image. An adaptive fuzzy filtering algorithm is suggested for estimating the parameters of the fuzzy model with noisy image data. The mathematical analysis of the proposed filtering algorithm has been provided in both deterministic and stochastic framework. The deterministic robustness of the filtering algorithm was shown by deriving an upper bound on the magnitude of estimation errors. The fuzzy filtering algorithm doesn’t demand Gaussian assumption of the noise and is also optimal in the “sense” of variation Bayes towards Student-t distributed noises.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.