Abstract

Most prognostic degradation models rely on a relatively accurate and comprehensive database of historical degradation signals. Typically, these signals are used to identify suitable degradation trends that are useful for predicting lifetime. In many real-world applications, these degradation signals are usually incomplete, i.e., contain missing observations. Often the amount of missing data compromises the ability to identify a suitable parametric degradation model. This paper addresses this problem by developing a semi-parametric approach that can be used to predict the remaining lifetime of partially degraded systems. First, key signal features are identified by applying Functional Principal Components Analysis (FPCA) to the available historical data. Next, an adaptive functional regression model is used to model the extracted signal features and the corresponding times-to-failure. The model is then used to predict remaining lifetimes and to update these predictions using real-time signals observed from fielded components. Results show that the proposed approach is relatively robust to significant levels of missing data. The performance of the model is evaluated and shown to provide significantly accurate predictions of residual lifetime using two case studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.