Abstract

SUMMARYIn this paper, an adaptive force reflection scheme is proposed for bilateral teleoperation. In order to achieve an ideal telepresence performance while keeping the system stable, the force reflection algorithm needs to take both the human force and the contact force into consideration. An observer based on the feature of the human operator is designed to estimate the force applied on the master device. The reflected force is calculated by performing the orthogonal decomposition of the contact force, and is adjusted adaptively according to the estimated human force. The direction of the reflected force becomes a key consideration in the design process, so the proposed approach has an advantage in the guiding contact task. Based on the small gain theorem, the master device with the force reflection scheme is proved to be input-to-output stable, and the derivation for stability criterion of the closed-loop teleoperation system is also given. The results of simulations and experiments on a 6-degree of freedom teleoperation system demonstrate the effectiveness of the proposed scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call