Abstract

Elastoviscoplastic fluids are a class of yield-stress fluids that behave like neoHookean (or viscoelastic) solids when the imposed stress is less than the yield stress whereas after yielding, their behaviour is described by a viscoplastic fluid with an additional elastic history. This exceptional behaviour has been recently observed by many yield-stress fluids in rheometric tests such as waxy crude oil, Carbopol gel, etc. Moreover, interesting phenomena have been evidenced experimentally such as the presence of a negative wake and a loss of fore-aft symmetry about a settling particle which are predominantly related to the elastic behaviour of yield-stress fluids (i.e., coupling of elasticity and plasticity). Here, we present a numerical scheme based on the so-called augmented Lagrangian method for numerical simulation of elastoviscoplastic fluid flows. The method is benchmarked by two rheometric flows: Poiseuille and circular Couette flows for which analytical solutions are derived. Moreover, anisotropic adaptive mesh procedure (which was previously introduced for viscoplastic fluid flows by Saramito and Roquet, Comput. Meth. Appl. Mech. Eng., vol. 190, 2001, pp. 5391–5412) is coupled to obtain a fine resolution of the yield surfaces. Finally, the presented method is applied to study more complex flows: elastoviscoplastic fluid flow in a wavy channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call