Abstract
AbstractWe present a solver for the Poisson-Boltzmann equation and demonstrate its applicability for biomolecular electrostatics computation. The solver uses a level set framework to represent sharp, complex interfaces in a simple and robust manner. It also uses non-graded, adaptive octree grids which, in comparison to uniform grids, drastically decrease memory usage and runtime without sacrificing accuracy. The basic solver was introduced in earlier works [16,27], and here is extended to address biomolecular systems. First, a novel approach of calculating the solvent excluded and the solvent accessible surfaces is explained; this allows to accurately represent the location of the molecule’s surface. Next, a hybrid finite difference/finite volume approach is presented for discretizing the nonlinear Poisson-Boltzmann equation and enforcing the jump boundary conditions at the interface. Since the interface is implicitly represented by a level set function, imposing the jump boundary conditions is straightforward and efficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.