Abstract

A significant challenge in DNA microarray and mass spectrometric data analysis can be attributed to the problem of having a large number of features with a small number of samples or patients in the data set. Particular care is required to deal with such a problem as the low classification accuracy of a model brought about by the small number of features may depict a low predictive capability. To overcome the associated challenges, proper approaches for data preprocessing, feature reduction and identifying the optimal set of features are critical. In this paper, a novel technique has been proposed for feature reduction and cancer classification; which is applicable for two different types of biological data. The proposed method has been implemented on Surface enhanced laser desorption/ionization time-of-flight mass spectrometric (SELDI-TOF-MS) and DNA microarray data sets. This technique is self adaptive and independent of the type data sets. We have developed a two step strategy for feature reduction such as (1) data preprocessing which includes merging and t-testing and (2) wavelet decomposition. For classification purpose, support vector machine (SVM) has been proposed. By evaluating the performance of the proposed algorithm on the two types of datasets it has been shown that the classification accuracy, sensitivity and specificity obtained by the features selected by the proposed method consistently give excellent performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.