Abstract

Directly combining several complementary features may increase the retrieval precision for 3D models. However, in most cases, we need to set the weights manually and empirically. In this paper, we propose a new schema for automatically choosing the proper weights for different features on each database. The proposed schema utilises the ranking order of the retrieval results, and it is invariant to the magnitude scaling. We choose the best feature as the standard one, and the relevance values between the standard and other features are the weights for feature combination. Furthermore, we propose an improved re-ranking algorithm for further improving the retrieval performance. Experiment shows the proposed method can automatically choose the proper weights for different features, and the experiment results on the existing features exceed the benchmark.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.