Abstract

In this paper, we introduce fully implementable, adaptive Euler–Maruyama schemes for McKean–Vlasov stochastic differential equations (SDEs) assuming only a standard monotonicity condition on the drift and diffusion coefficients but no global Lipschitz continuity in the state variable for either, while global Lipschitz continuity is required for the measure component. We prove moment stability of the discretised processes and a strong convergence rate of 1/2. Several numerical examples, centred around a mean-field model for FitzHugh–Nagumo neurons, illustrate that the standard uniform scheme fails and that the adaptive approach shows in most cases superior performance to tamed approximation schemes. In addition, we introduce and analyse an adaptive Milstein scheme for a certain sub-class of McKean–Vlasov SDEs with linear measure-dependence of the drift.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.